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Abstract. For the integrable case of the discrete self-trapping (DST) model we construct a
Bäcklund transformation. The dual Lax matrix and the corresponding dual Bäcklund transformation
are also found and studied. The quantum analogue of the Bäcklund transformation (Q-operator)
is constructed as the trace of a monodromy matrix with an infinite-dimensional auxiliary space.
We present theQ-operator as an explicit integral operator as well as describing its action on the
monomial basis. As a result we obtain a family of integral equations for multivariable polynomial
eigenfunctions of the quantum integrable DST model. These eigenfunctions are special functions
of the Heun class which is beyond the hypergeometric class. The integral equations found are new
and they shall provide a basis for efficient analytical and numerical studies of such complicated
functions.

1. Introduction

The discrete self-trapping (DST) equation was introduced by Eilbecket al [1] to model the
nonlinear dynamics of small molecules, such as ammonia, acetylene, benzene, as well as
large molecules, such as acetanilide. In simple terms, it consists of a set ofn nondissipative
anharmonic oscillators coupled through dispersive interactions. Due to the nonlinearity
this system can have complicated dynamical behaviour going from quasiperiodic motion to
chaos [2,3]. The DST equation is also found in connection with physical problems in different
areas such as the stabilization of high-frequency vibrations in biomolecular dynamics [4],
arrays of coupled nonlinear waveguides in nonlinear optics [5] and quasiparticle motion on a
dimer [6]. In the case of two degrees of freedomn = 2 (DST dimer) the system is integrable
having, besides the Hamiltonian (energy), another conserved quantity, the norm (number of
particles in the quantum case). The integrability properties of the classical and quantum DST
dimer were studied in detail by several methods such as the number state method [7], the
algebraic Bethe ansatz [8] and the method of separation of variables [9]. For more than two
degrees of freedom an integrable case of the DST system was found and studied in [10]. This
integrable case is close to the Toda lattice and coincides forn = 2 with the usual DST dimer.
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The quantum Hamiltonian,H , of the integrable DST model contains(n + 1) parameters
c1, . . . , cn, b and is defined as a second-order differential operator (here,∂i ≡ ∂/∂xi)

H =
n∑
i=1

( 1
2x

2
i ∂

2
i + (ci + 1

2)xi∂i + bxi+1∂i) (1.1)

acting in the spaceC[ Ex] of polynomials ofn variables{x1, . . . xn} ≡ Ex. In (1.1), and other
similar formulae, we always assume the periodic boundary conditionsxn+1 ≡ x1.

The HamiltonianH obviously commutes with the number-of-particles operatorN

N =
n∑
i=1

xi∂i . (1.2)

As shown in section 4,H andN can be included in a commutative ring of differential
operators generated by a basis ofn operators, this fact allows one to claim the quantum
integrability of the system.

The multiplication operatorsxi and the respective differentiations∂i can be considered as
generators of a Heisenberg algebra (creation/annihilation operators). There exists a well known
scalar product onC[ Ex] (holomorphic representation) such thatxi and ∂i become mutually
adjoint∂†

i = xi . The corresponding HamiltonianH is self-adjoint, however, only in the dimer
casen = 2. In the generaln > 2 case, no involution renderingH self-adjoint is known. The
Hilbert space structure is, however, quite irrelevant for the kind of problems we are interested
in and will be completely ignored throughout the paper.

The DST chain can be considered as a degenerate case of the Heisenberg magnetic chain,
though not as degenerate as the Toda lattice. This makes the DST chain a good tool for studying
various techniques applicable to integrable models since it requires more effort than the Toda
lattice but is still simpler than the generic magnetic chain.

The main purpose of this paper is to construct an analogue of Baxter’sQ-operator [11] for
the integrable DST model. By definition, theQ-operator,Qλ, shares the set of eigenvectors
with the HamiltoniansHi , and its eigenvalues are polynomials inλ satisfying a finite-difference
equation known as theBaxteror separation equation. As was shown in [12] for the example
of the periodic Toda lattice, in the classical limit the similarity transformationO 7→ QλOQ−1

λ

turns into a classical B̈acklund transformation that is a one-parametric family of canonical
transformations preserving the commuting Hamiltonians. Later, in [13], for the classical
Bäcklund transfomations the property ofspectrality was described which is the classical
counterpart of the separation equation for the eigenvalues ofQλ. In this paper we follow the
approach of [13] first studying the classical case and paying special attention to the spectrality
property of the corresponding Bäcklund transformation.

Our main result (see sections 4–7) is the following integral equation:∫
γ

dξ1 . . .

∫
γ

dξn

[ n∏
i=1

i

2π
0(λ + 1− ci)e−ξi (−ξi)ci−λ−1ψ

]
(. . . , yj ξj + byj+1, . . .) (1.3)

= q(λ)ψ(y1, . . . , yn) q(λ) ∈ C[λ] (1.4)

for the polynomial eigenfunctionsψ ∈ C[ Ex] of the Hamiltonian (1.1)

Hψ(x1, . . . , xn) = hψ(x1, . . . , xn). (1.5)

The structure of this paper is as follows. In section 2 we consider the classical version
of the integrable DST chain and describe its relation to the Toda lattice and the isotropic
Heisenberg magnetic chain. Our construction of the Bäcklund transformation generalizes
well known results for the Toda lattice. Following [13], we also study the dual Lax matrix and
the corresponding dual B̈acklund transformation in section 3.
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In section 4 we discuss the quantization of the integrable DST model and present a list of
properties of Baxter’sQ-operator. In section 5, following the approach of [14], we construct
a Q-operator,Qλ, for the quantum DST chain as the trace of a monodromy matrix with
an infinite-dimensional auxiliary space. In the spirit of [12], we considerQλ as an integral
operator inC[ Ex] and in section 6 find its kernel and contour of integration. In the same section
we study analyticity properties ofQλ in the parameterλ, prove that its matrix elements in the
monomial basis are polynomials inλ and give explicit formulae for its action on polynomials.
We consider in details the simplestn = 1 case where theQ-operator provides an integral
representation for classical orthogonal polynomials (Charlier polynomials). In section 7 we
prove thatQλ satisfies a finite-difference equation in the parameterλ. Finally, in section 8, we
discuss possible generalizations and applications of our results.

2. Classical case

In this section we consider the classical integrable DST chain [10]. The model is described in
terms ofn pairs of canonical variables(Xi, xi), i = 1, . . . , n

{Xi,Xj } = {xi, xj } = 0 {Xi, xj } = δij (2.1)

(the periodicity conventionxi+n ≡ xi , Xi+n ≡ Xi is always assumed for the indices ofxi
andXi).

The canonical momentaXi replace, in the classical case, the differential operators∂i .
As mentioned before, in the quantum case we do not make any assumptions about the self-
adjointness of the observables. Respectively, we allow the classical variables(Xi, xi) to be
complex.

To constructn commuting Hamiltonians we introduce the Lax matrixL(u) (monodromy
matrix) as a product ofn local Lax matrices̀ i (u)

L(u) = `n(u) . . . `2(u)`1(u) (2.2)

`i(u; xi, Xi) =
(
u− ci − xiXi bxi
−Xi b

)
(2.3)

whereb, ci ∈ C are parameters of the model, andu is the so-called spectral parameter of the
Lax matrix.

Denoting by id2 the unit 2× 2 matrix and introducing notations for the tensor products
1
` ≡ `⊗ id2,

2
` ≡ id2⊗` one establishes ther-matrix identity [15]

{
1
`i(u1),

2
`j (u2)} = [r12(u1− u2),

1
`i(u1)

2
`j (u2)]δij r12(u) = −1

u
P12 (2.4)

whereP12 is the permutation operator inC2 ⊗ C2. From (2.4) the corresponding identity for
the monodromy matrix

{
1
L(u1),

2
L(u2)} = [r12(u1− u2),

1
L(u1)

2
L(u2)] (2.5)

is derived in the standard way [15] which, in turn, ensures the commutativity of the spectral
invariants t (u) and d(u) of the matrixL(u) defined as coefficients of its characteristic
polynomial

det(v − L(u)) = v2 − t (u)v + d(u). (2.6)

Since det̀ i (u) = b(u− ci), the determinantd(u) ≡ detL(u) =∏n
i=1 b(u− ci) is scalar,

and the only nontrivial spectral invariant is the tracet (u):

t (u) ≡ trL(u) = L11(u) +L22(u) (2.7)
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which serves as a generating function of commuting independent HamiltoniansHi :

t (u) = un +
n∑
i=1

(−1)iHiu
n−i . (2.8)

As a corollary of (2.5) we have the commutativity oft (u)

{t (u1), t (u2)} = 0 (2.9)

and, consequently, the commutativity{Hi,Hj } = 0 of the HamiltoniansHi .
A direct calculation shows that

H1 = N +
n∑
i=1

ci H2 = 1
2H

2
1 −H − 1

2

n∑
i=1

c2
i (2.10)

where

N =
n∑
i=1

xiXi H =
n∑
i=1

( 1
2x

2
i X

2
i + cixiXi + bxi+1Xi) (2.11)

ensuring that the polynomial ring of commuting Hamiltonians contains the number of particles
N , and the HamiltonianH .

Note that ther-matrixr12(u) in (2.4) is the same as for the isotropic Heisenberg magnetic
chain and the Toda lattice [15], which puts these integrable models into the same class. Indeed,
the Toda lattice is a degenerate case of the DST chain. To demonstrate this, it is sufficient to
make a constant shiftu 7→ u + b−1 of the spectral parameter iǹi (u) given by (2.3) and take
the limit

b→ 0 xj = eqj (b−1 + pj ) + O(b) Xj = e−qj (2.12)

contracting the ‘oscillator’ algebra(xi, Xi, xiXi) into the Euclidean Lie algebra(e±qi , pi). In
the limit `i(u) turns into the elementarỳ-matrix for the Toda lattice:

`i(u)→
(
u− ci − pi eqi

−e−qi 0

)
(2.13)

(the ci shifts become irrelevant since they can be absorbed into a simple canonical
transformationpi 7→ pi − ci). On the other hand, the DST model, in turn, is a degenerate
case of the HeisenbergXXXmagnet corresponding to the contraction of thesu(2) Lie algebra
into the oscillator algebra. The DST model occupies an intermediate position between the
Heisenberg and Toda models.

In this paper we take the Hamiltonian point of view on the Bäcklund transformation,
according to which the B̈acklund transformationBλ is a one-parameter family of simplectic
maps from the canonical variables( EX, Ex) to the canonical variables( EY , Ey) possessing certain
characteristic properties (see [13] for a detailed discussion). For Hamiltonian integrable
systems allowing a description in terms of ther-matrix algebra (2.5) an algorithmic method
has recently been found for constructing a Bäcklund transformation [16,17]. Since the method
has been described in detail in the cited papers, here we present only the results.

As in the case of the periodic Toda lattice [12,13], it is convenient to describe the canonical
transformationBλ in terms of the generating function

Fλ(Ey | Ex) = nλ +
n∑
i=1

(
xi − byi+1

yi
+ (λ− ci) ln

byi+1− xi
(λ− ci)byi

)
(2.14)

Xi = ∂Fλ

∂xi
= 1

yi
+

λ− ci
xi − byi+1

(2.15a)

Yi = −∂Fλ
∂yi
= bXi−1 +

xi − byi+1

yi
Xi. (2.15b)
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To prove thatBλ preserves the HamiltoniansHi

Hi( EX, Ex) = Hi( EY , Ey) (2.16)

we proceed in the same manner as in [12, 13] for the periodic Toda lattice. Introducing the
matrices

Mi(u) =
(

1 −byi+1

Xi u− λ− byi+1Xi

)
(2.17)

one then directly verifies the equality

Mi(u)`i(u;Xi, xi) = `i(u;Yi, yi)Mi−1(u) (2.18)

from which it follows thatBλ preserves the spectrum of the Lax matrixL(u)

Mn(u, λ)L(u; EX, Ex) = L(u; EY , Ey)Mn(u, λ)

which, in turn, ensures the invariance oft (u) and, therefore, ofHi (2.16).
To formulate thespectrality property[13] of the B̈acklund transformation we introduce

the quantityµ canonically conjugated, in a sense, toλ:

lnµ = −∂Fλ
∂λ
=

n∑
i=1

ln
(λ− ci)byi
byi+1− xi µ =

n∏
i=1

(λ− ci)byi
byi+1− xi . (2.19)

The spectrality of the B̈acklund transformation means that the(λ, µ) pair lies on the
spectral curve of the Lax matrix

det(µ− L(λ)) = 0. (2.20)

To prove it, we again follow [13]. We observe that foru = λ the matrixMi(u) degenerates

Mi(λ) =
(

1 −byi+1

Xi −byi+1Xi

)
=
(

1
Xi

)
(1 −byi+1) (2.21)

and its null-vectorωi can be found explicitly:

Mi(λ)ωi = 0 ωi =
(
byi+1

1

)
. (2.22)

Then noting the identity

`i(λ)ωi−1 = (λ− ci)byi
byi+1− xi ωi (2.23)

we conclude that

L(λ)ωn = µωn (2.24)

whence (2.20) follows immediately.
The commutativityBλ1 ◦Bλ2 = Bλ2 ◦Bλ1 is an immediate consequence of the invariance

of Hamiltonians and their completeness, see [13].
Note thatM−1

i (u) and`i(u) have, as functions ofu, essentially the same structure, up to
a shift ofu and a scalar factor. The fact is by no means a coincidence: see [17] for a detailed
explanation.

3. Dual Lax matrix

We conclude the study of the classical case by presenting thedual Lax matrix and the dual
Bäcklund transformation for the DST model. In [10] two different Lax matrices were found
for the integrable DST system, the 2× 2 Lax matrixL(u) and also then× n Lax matrix. This
bigger Lax matrix did not contain a spectral parameter. Here we present ann× n Lax matrix
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L(v) containing a spectral parametervwhich is dual toL(u) in the sense that the corresponding
spectral curves are equivalent up to interchanging the spectral parametersu andv

(bn − v) det(u− L(v)) = det(v − L(u)). (3.1)

To produce the dual Lax matrixL(v) we take an eigenvectorθ1(u) of L(u) corresponding
to the eigenvaluev (for brevity, we will not mark the dependence onu in θ )

L(u)θ1 = vθ1 (3.2)

and define by inductionθi as

θi+1 = `i(u)θi i = 1, . . . , n. (3.3)

From (3.2) it follows thatθn+1 = vθ1. The functionθi(u), when properly normalized, is
called theBaker–Akhiezer function. Denoting the components of the vectorθi asϕi andψi ,
we present (3.3) explicitly as(

ϕi+1

ψi+1

)
=
(
u− ci − xiXi bxi
−Xi b

)(
ϕi
ψi

)
. (3.4)

Then, splitting the components and taking into account the quasiperiodicity condition
θn+1 = vθ1, we arrive at the following linear equations forϕi andψi :

uϕi = ϕi+1 + (ci + xiXi)ϕi − bxiψi i = 1, . . . , n− 1 (3.5a)

uϕn = vϕ1 + (cn + xnXn)ϕn − bxnψn (3.5b)

ψi+1 = −Xiϕi + bψi i = 1, . . . , n− 1 (3.6a)

vψ1 = −Xnϕn + bψn. (3.6b)

Eliminatingψi we can write down the linear problem for the vector8with the components
ϕi in the matrix form:

L(v)8 = u8 8 =
(
ϕ1

. . .

ϕn

)
(3.7)

where the matrixL(v) defined as

L(v) = (v − bn)−1
n∑

j,k=1

bn+j−kxjXkEjk + vEn1 +
∑
j>k

bj−kxjXkEjk

+
n∑
j=1

cjEjj +
n−1∑
j=1

Ej,j+1 (3.8)

is the dual Lax matrix we were looking for. HereEjk is then×nmatrix with the only non-zero
entry(Ejk)jk = 1. The proof of identity (3.1) is an exercise which we leave to the reader. For
the caseb = 1 andv = −1 the dual Lax matrix for the DST model was first found in [10].
For examples of Lax matrices duality in other integrable models see [18].

The B̈acklund transformationBµ corresponding to the dual Lax operatorL(v) is given
by the same equations: (2.15a), (2.15b) and (2.19). The important difference, however, is that
nowµ is a free numerical parameter of the Bäcklund transformation, whereasλ becomes a
dynamical variable determined from equation (2.19). Equality (2.19) is now reinterpreted as
the equation defining the variableλ. The generating function ofBµ is the Legendre transform
of Fλ(Ey | Ex) with respect toλ.

The properties of the dual B̈acklund transformationBµ are proved in the same manner as
those ofBλ (see also [13], for the Toda lattice case). For the proof we need a matrixM(v)

playing forL(v) the same role thatMn(u) played forL(u).
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Let θ̃i be defined as̃θi = Mi−1θi . From (2.18) it follows that̃θi is a Baker–Akhiezer
function for `i(u;Yi, yi). The first component of the equalitỹθi = Mi−1θi readsϕ̃i =
ϕi − byiψi . Substitutingψi from the solution of the system (3.6a), (3.6b) we obtain the
correspondencẽ8 =M(v)8 with the matrixM(v) defined as

M(v) = (v − bn)−1
n∑

j,k=1

bn+j−kyjXkEjk +
∑
j>k

bj−kyjXkEjk +
n∑
j=1

Ejj . (3.9)

The invariance of the spectrum ofL(v) follows from the identity

M(v)L(v; EX, Ex) = L(v; EY , Ey)M(v). (3.10)

The spectrality is expressed as the identity

det(λ− L(µ)) = 0. (3.11)

To prove (3.11) it is sufficient to note that the matrixM(v) degenerates asv = µ
detM(µ) = 0 (3.12)

and the corresponding null-vector� defined by the recurrence relation

�i+1

�i
= b(ci − λ)yi+1

xi − byi+1
i = 1, . . . , n− 1 (3.13)

is, by virtue of (3.10), also an eigenvector ofL(µ) corresponding to the eigenvalueλ

L(µ)� = λ�. (3.14)

Since the Toda lattice is a degenerate case of the DST model, then×n Lax matrix for the
Toda lattice can be obtained, as one could expect, from ourL(v) matrix in the limitb → 0,
as in (2.12). The result is a variant of the standardn × n Lax matrix for the periodic Toda
lattice [19]:

L(v) = b−1 + LT L(v) + O(b) (3.15)

LT L(v) = v−1eqn−q1E1n + vEn1 +
n∑
j=1

(pj + cj )Ejj +
n−1∑
j=1

eqj−qj+1Ej+1,j +
n−1∑
j=1

Ej,j+1.

(3.16)

Similarly, fromM(v) one obtains the corresponding matrix for the Toda lattice, see [13].
The Poisson brackets for both dual Lax matricesL(v) can be expressed in the generalized

r-matrix form [20]

{ 1
L(v1),

2
L(v2)} = [r12(v1, v2),

1
L(v1)] − [r21(v1, v2),

2
L(v2)] (3.17)

the ‘non-unitary’r-matrix having the form

r12(v1, v2) = 1

v1− v2

(
v2

∑
k>j

+v1

∑
k<j

)
Ejk ⊗ Ekj (3.18)

andr21(v1, v2) = Pr(v2, v1)P, whereP = ∑n
j,k=1Ejk ⊗ Ekj is the permutation matrix in

Cn ⊗ Cn.
The non-unitaryr-matrix (3.18) in the case of Toda’s Lax matrix can be unitarized by a

gauge transformation:

L(v) = VLT L(v)V −1 V =
n∑
j=1

eqj /2Ejj (3.19)
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obtaining, for the new Lax matrixL(v), the standard unitaryAn−1-typer-matrix

r12(v1, v2) = v1 + v2

v1− v2

n∑
j=1

Ejj ⊗ Ejj +
1

v1− v2

(
v2

∑
k>j

+v1

∑
k<j

)
Ejk ⊗ Ekj (3.20)

r12(v1, v2) = −r21(v1, v2) (3.21)

{
1
L(v1),

2
L(v2)} = [r12(v1, v2),

1
L(v1) +

2
L(v2)] (3.22)

see, for instance, the second paper in [19].

4. Quantization

In the quantum case the canonical momentaXi are replaced with the differentiations∂i ≡ ∂/∂xi
(having no intent to discuss the conjugation properties of the observables, we discard the factor
ih̄ to simplify the notation). To preserve the commutativity of the HamiltoniansHi upon
quantization one needs to choose the operator ordering in a special way.

The necessary algebraic framework is given by the quantum inverse scattering or the
R-matrix [11,21] method. Defining the local quantum Lax matrix as

`i(u) =
(
u− ci − xi∂i bxi
−∂i b

)
(4.1)

one verifies the commutation relation

R12(u1− u2)
1
`(u1)

2
`(u2) =

2
`(u2)

1
`(u1)R12(u1− u2) (4.2)

where

R12(u) = u + P12 (4.3)

is the standardSL(2)-invariant solution to the quantum Yang–Baxter equation. The quantum
Lax operator, or monodromy matrix,L(u) and its tracet (u) are defined then by the same
formulae, (2.2) and (2.7), as in the classical case. From (4.2) one then derives in a standard
way the similar commutation relation

R12(u1− u2)
1
L(u1)

2
L(u2) =

2
L(u2)

1
L(u1)R12(u1− u2) (4.4)

for L(u), from which the commutativity oft (u)

[t (u1), t (u2)] = 0 (4.5)

follows immediately. The commutative quantum HamiltoniansHi are then defined, as in
the classical case (2.8), as coefficients of the polynomialt (u). It is easy to see thatHi is a
differential operator of orderi leaving invariant the spaceC[ Ex] of polynomials ofx1, . . . xn. In
particular,H1 andH2 are given by the formulae (2.10) withN andH given by (1.2) and (1.1),
respectively.

The main problem in the quantum case is the spectral problem for commuting differential
operators, quantum Hamiltonians{Hi}ni=1:

Hiψ(x1, . . . , xn) = hiψ(x1, . . . , xn) ψ(x1, . . . , xn) ∈ C[ Ex]. (4.6)

One can describe the spectrum and eigenvectors ofHi , or, equivalently,t (u) using the
well-developed machinery of thealgebraic Bethe ansatz[21]. Defining the vacuum state|0〉
as the unit function|0〉(x) ≡ 1 inC[ Ex] we note that

L21|0〉 = 0 L11(u)|0〉 = α11(u)|0〉 L22(u)|0〉 = α22(u)|0〉 (4.7)

where

α11(u) =
n∏
i=1

(u− ci) α22(u) = bn. (4.8)
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Defining theBethe vectorψEv(x1, . . . , xn) ∈ C[ Ex] parametrized bym complex numbers
vj as

ψEv(x1, . . . , xn) ≡ |v1, . . . , vm〉 = L12(v1) . . . L12(vm)|0〉 (4.9)

one can prove [21], using the commutation relations (4.4), that|v1, . . . , vm〉 is an eigenvector
of t (u), for anyu ∈ C, if and only if the parametersvj satisfy the system of algebraicBethe
equations

m∏
j=1

vk − vj + 1

vk − vj − 1
= −α11(vk)

α22(vk)
k = 1, . . . , m (4.10)

and the corresponding eigenvalueτ(u) of t (u)

t (u)|v1, . . . , vm〉 = τ(u)|v1, . . . , vm〉 (4.11)

is given by the formula

τ(u) = α11(u)

m∏
j=1

u− vj − 1

u− vj + α22(u)

m∏
j=1

u− vj + 1

u− vj . (4.12)

It is usually assumed that Bethe eigenvectors are complete, at least for generic values of
parameters. The proof of the conjecture is, however, a difficult task, and is available only for
a few models, see [21] for a discussion.

In his seminal study [11] of the integrableXYZ andXXZ spin chains R J Baxter has
pointed out that the equations similar to our equations (4.10) and (4.12) can be reformulated
equivalently as a finite-difference equation in a certain class of holomorphic functions.
Adapting his reasoning to our case we introduce the polynomialφ(λ; Ev) in λ whose zeros
are the Bethe parametersvj :

φ(λ; Ev) =
m∏
j=1

(λ− vj ) λ ∈ C. (4.13)

It is then easy to see that the following finite-difference equation of second order for
φ(λ; Ev):

φ(λ; Ev)τ(λ) = α11(λ)φ(λ− 1; Ev) + α22(λ)φ(λ + 1; Ev) (4.14)

is equivalent to the system of equations (4.10) for{vj }mj=1, and to equation (4.12) forτ(λ). To
show this, it is sufficient to divide both sides of (4.14) byφ(λ) and take residues atλ = vj . The
equation (4.14) is called theBaxteror separationequation. The reason for the latter name is
that an identical equation arises when solving the model via the separation of variables method
(see [13] for more on relation betweenQ-operator and quantum separation of variables).

Now we are able to describe the problem we are going to study in the remaining sections
of this paper. We are looking for a one-parameter family of operatorsQλ acting inC[ Ex] such
thatQλ shares witht (u) the same set of Bethe eigenvectors, and the eigenvaluesq(λ) of Qλ

Qλ|v1, . . . , vm〉 = q(λ)|v1, . . . , vm〉 (4.15)

are polynomials inλ satisfying Baxter’s equation (4.14). Up to a normalization coefficient
κEv, depending on the eigenvector, the polynomialsq(λ) are proportional to the polynomials
φ(λ; Ev) defined by (4.13):

q(λ) = κEvφ(λ; v1, . . . , vm) = κEvλm + O(λm−1) λ→∞. (4.16)

Instead of dealing with eigenvectors and eigenvalues it is more convenient to characterize
Qλ by the following operator identities which are equivalent to the above characterization,
assuming the completeness of Bethe eigenvectors. We demand thatQλ commute witht (u)

[t (u),Qλ] = 0 (4.17a)
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and self-commute
[Qλ1,Qλ2] = 0 (4.17b)

as well as satisfy the finite-difference equation

Qλt(λ) = Qλ−1

n∏
i=1

(λ− ci) + bnQλ+1. (4.17c)

In addition, the eigenvalues ofQλ should be polynomial inλ
q(λ) ∈ C[λ]. (4.17d)

The above conditions by no means defineQλ uniquely. Apparently, one can construct
infinitely manyQ-operators just by fixing arbitrary normalization coefficientsκEv for each
eigenvector|Ev〉 in (4.16). The difficult problem is to find an explicit expression for aQ-
operator. Baxter succeeded in solving the problem in case ofXYZ andXXZ spin chains,
having given an expression forQλ as a trace of a monodromy matrix [11]. However, his
formulae do not survive when passing to the limiting case of theXXX spin chain, governed
by theSL(2) invariantR-matrix (4.3).

In the case of the quantum periodic Toda lattice, which is another model governed by
theR-matrix (4.3), a solution was found by Pasquier and Gaudin [12]. Instead of trying to
constructQλ as trace of a monodromy matrix, they consideredQλ as an integral operator

Qλ : ψ(Ex) 7→
∫

dx1 . . .

∫
dxnQλ(Ey | Ex)ψ(Ex) (4.18)

having given an explicit expression for its kernelQλ(Ey | Ex). They also discovered an important
relation between the kernelQλ(Ey | Ex) and the generating functionFλ(Ey | Ex) of the classical
Bäcklund transformation expressed by the semiclassical formula

Qλ(Ey | Ex) ∼ exp

(
− i

h̄
Fλ(Ey | Ex)

)
h̄→ 0. (4.19)

The classical B̈acklund transformationBλ is thus the classical limit of the similarity
transformationO 7→ QλOQ−1

λ .
Recently, it was found [14] how the original Baxter’s construction [11] can be generalized

to produceQ-operators for the models governed by theA1-typeR-matrices, such as theXXZ
spin chain and sine–Gordon model. According to [14],Qλ is constructed as the trace of a
monodromy matrix built from the local Lax operators corresponding, in the auxiliary space,
to the special infinite-dimensional representations of the quantum groupUq [ŝl2] (q-oscillator
representations).

In the subsequent sections we construct aQ-operator for the quantum DST model and
prove its characteristic properties. Our approach combines those of [12,14]. Similarly to [14],
we construct ourQ-operator as the trace of a monodromy matrix with an infinite-dimensional
auxiliary space. In the spirit of [12], we findQλ as an integral operator acting inC[ Ex] and
present several equivalent expressions for it.

TheQ-operator being found as an integral operator will give integral equations for the
eigenfunctionsψEv. The advantage of this transformation of the differential spectral problem
into integral spectral problem is that it gives an alternative to the Bethe representation of
multivariable special functions. The general approach of constructing aQ-operator for a
given integrable system will be of even greater importance in situations when the Bethe ansatz
does not work.

5. Construction of theQ-operator

The structure ofQλ is similar to that oft (u) given by (2.2) and (2.7). We constructQλ as the
trace of a monodromy matrix built of the elementary blocksR(i)λ−ci . Suppose thatRλ is a linear
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operator fromC[s, x] to C[t, y]. The spacesC[x] andC[y] are referred to asquantumspaces
andC[s] andC[t ], respectively, asauxiliary ones (see [21]). To constructQλ we introducen
copiesR(i)λ−ci of Rλ assuming thatR(i)λ−ci : C[si, xi ] 7→ C[si+1, yi ] (remember the periodicity

convention,n + 1 ≡ 1) and extendingR(i)λ−ci on C[xj ] (j 6= i) as the unit operator. The

monodromy matrixR(n)λ−cn . . .R
(1)
λ−c1

then acts fromC[s1, Ex] into C[s1, Ey], andQλ is obtained
by taking the trace in the auxiliary spaceC[s1]:

Qλ = trs1 R
(n)
λ−cn . . .R

(1)
λ−c1

. (5.1)

SupposingRλ to be an integral operator

Rλ : ψ(s, x) 7→
∫

dx
∫

dsRλ(t, y | s, x)ψ(s, x) (5.2)

for the kernelQλ(Ey | Ex) of Qλ we have

Qλ(Ey | Ex) =
∫

dsn . . .
∫

ds1
n∏
i=1

Rλ−ci (si+1, yi | si, xi). (5.3)

To ensure the commutativity [t (u),Qλ] = 0 it is sufficient to demand thatRλ intertwines

M(u− λ; t, ∂t )`(u; y, ∂y)Rλ = Rλ`(u; x, ∂x)M(u− λ; s, ∂s) (5.4)

the local Lax operator̀(u) and some other representationM(u−λ) of the same algebra (4.2)

R(u1− u2)
1
M(u1)

2
M(u2) =

2
M(u2)

1
M(u1)R(u1− u2) (5.5)

with the sameR-matrix (4.3). The proof of (4.17a) then follows by a standard argument [15,21].
Similarly, to prove [Qλ1,Qλ2] = 0 (4.17b) it is sufficient to establish the Yang–Baxter

identity∫
dt1

∫
dt2

∫
dy R̃λ1−λ2(w1, w2 | t1, t2)Rλ1(t1, z | s1, y)Rλ2(t2, y | s2, x)

=
∫

dt1

∫
dt2

∫
dyRλ2(w2, z | t2, y)Rλ1(w1, y | t1, x)R̃λ1−λ2(t1, t2 | s1, s2)

(5.6)

with some kernelR̃λ.
The representationM(u− λ) of the algebra (5.5) should be chosen in such a way that the

resultingQλ, as a function ofλ, satisfy Baxter’s finite-difference equation (4.17c) and have
polynomial eigenvalues (4.17d). As we shall show, for this purpose one can take

M(u; s, ∂s) =
(
u− s∂s s

−∂s 1

)
(5.7)

coinciding essentially with̀ (u) with b = 1 and ci = 0. For the YangianY[sl2]
representation (5.7) plays the same role as theq-oscillator representation plays for the quantum
groupUq [ŝl2] in [14]. Having fixedM(u) by (5.7) we get, from (5.4), a set of differential
equations for the kernelRλ(t, y | s, x) of Rλ(
u− λ− t∂t t

−∂t 1

)(
u− y∂y by

−∂y b

)
Rλ(t, y | s, x)

=
(
u + 1 +x∂x bx

∂x b

)(
u− λ + 1 + s∂s s

∂s 1

)
Rλ(t, y | s, x) (5.8)

(in the right-hand side we have used integration by parts and the identities∂∗x = −∂x ,
(x∂x)

∗ = −∂xx = −1− x∂x). Equations (5.8) determineRλ up to a scalar factorρλ:

Rλ(t, y | s, x) = ρλδ(s − by)y−1 exp

(
t − x
y

)(
t − x
y

)−λ−1

. (5.9)
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It remains to choose the factorρλ in (5.9) and the integration contour in (5.2) in such a
way thatRλ : C[s, x] 7→ C[t, y, λ].

We describe first the final formula forRλ and equivalent expressions and then prove the
polynomiality property. As the basic definition ofRλ we choose the following formula:

Rλ : ψ(s, x) 7→ i

2π
0(λ + 1)

∫
γ

dξ e−ξ (−ξ)−λ−1ψ(by, yξ + t). (5.10)

The infinite integration contourγ is shown in figure 1. The branch of the many-
valued function(−ξ)−λ−1 in (5.10) is fixed by making a cut along(0,∞) and assuming
that−π 6 arg(−ξ) 6 π .

From (5.10) it is apparent thatRλ, as a function ofλ, is analytic inC except at the poles
λ = −1,−2, . . . of the factor0(λ + 1). As shown below, in factRλ continues analytically on
the whole complex plane.

Figure 1. Integration contourγ .

Indeed, for Reλ < 0 one can pull the contourγ over the cut(0,∞) and replace
∫
γ

dξ f (ξ)

with
∫∞

0 dξ [f (ξ − i0)− f (ξ + i0)] which results in the formula

Rλ : ψ(s, x) 7→ 1

0(−λ)
∫ ∞

0
dξ e−ξ ξ−λ−1ψ(by, yξ + t) Reλ < 0 (5.11)

which is analytic inλ = −1,−2, . . . . The branch ofξ−λ−1 in (5.11) is fixed by the condition
argξ = 0.

To putRλ in the form (5.2) convenient for checking the intertwining relation (5.8) one has
to make the change of variablesx = yξ + t in (5.10). The result is given by formula (5.2) with
the kernelRλ given by expression (5.9) with the scalar factorρλ = i

2π 0(λ+ 1) and integration
in x taken over the contourγ ′ = yγ + t . As for the integration contour ins, it needs only to
pass through the points = by because of the factorδ(s − by) in Rλ.

In the same way, from (5.11) one again obtains formula (5.2) with kernel (5.9) with the
different scalar factorρλ = 1/0(−λ) and integration inx taken over the ray starting from
x = t and going in the direction ofy/ |y|.

Now we have the full description of the operatorRλ and can start to study its properties. By
construction,Rλ satisfies relation (5.4) from which the commutativity [t (u),Qλ] = 0 (4.17a)
follows. By direct calculation one can also establish the Yang–Baxter identity (5.6) with the
kernelR̃λ ≡ Rλ|b=1 thus proving the commutativity [Qλ1,Qλ2] = 0 (4.17b). The proof of
the remaining properties ofQλ from the list presented in section 4 is given in sections 6 and 7.

We conclude this section by giving an alternative description ofRλ in terms of the
polynomial bases which complements the above ones in terms of integral operators.

To calculate explicitly the action ofRλ on the monomial basisskxj in C[s, x] one puts
ψ(s, x) = skxj in (5.10), then expands the binomial(yξ + t)j and applies, termwise, Hankel’s
integral formula [22]∫

γ

dξ e−ξ (−ξ)ν−1 = − 2π i

0(1− ν) . (5.12)
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Using the Pochhammer symbol(c)m ≡ 0(c +m)/0(c) = c(c + 1) . . . (c +m − 1) one
can write down the result as

Rλ : skxj 7→
j∑

m=0

(
j

m

)
(−λ)mtj−mym+kbk = t j bkCj (λ; t/y) (5.13)

whereCm(λ; b) are the so-calledCharlier polynomials[22,23]

Cm(λ; b) = 2F0

[−m,−λ
− ;−b−1

]
.

Formula (5.13) proves the polynomialityRλ : C[s, x] 7→ C[t, y, λ]. Note that the
normalization ofRλ is chosen in such a way thatRλ : 1 7→ 1.

The action ofRλ on polynomials can be described in an even more compact way.
Substitutingψ(s, x) = sk(x − t)j into (5.10) and using again Hankel’s formula (5.12) one
obtains the most economic description ofRλ

Rλ : sk(x − t)j 7→ yj+k(−λ)jbk. (5.14)

At the end of the next section we will discuss (5.14) and similar formulae in more detail.

6. Analytical properties of theQ-operator

To produce a description ofQλ as an integral operator (4.18) we substitute expression (5.9) for
the kernelRλ found in the previous section into formula (5.3). The integration insi is easily
performed due to the delta-function factors inRλ and, corresponding to the two choices of the
factorρλ in (5.9) and the integration contour in (5.2), we obtain two equivalent descriptions of
Qλ.

The first formula forQλ is given by (4.18) with the kernelQλ(Ey | Ex)

Qλ(Ey | Ex) =
n∏
i=1

wi(λ; yi+1, yi, xi) (6.1)

where

wi(λ; yi+1, yi, xi) = i

2π
0(λ + 1− ci)y−1

i

(
byi+1− xi

yi

)ci−λ−1

exp

(
byi+1− xi

yi

)
(6.2)

and integration inxi is taken over the contourγi = yiγ + byi+1, whereas the contourγ is
defined in the previous section.

The alternative formula is given again by (4.18) with the kernelQ̃λ(Ey | Ex)

Q̃λ(Ey | Ex) =
n∏
i=1

w̃i(λ; yi+1, yi, xi) (6.3)

where

w̃i(λ; yi+1, yi, xi) = y−1
i

0(ci − λ)
(
xi − byi+1

yi

)ci−λ−1

exp

(
byi+1− xi

yi

)
(6.4)

and integration inxi is taken over the straight ray starting fromxi = byi+1 and extending to
infinity in theyi/ |yi | direction.

Note that the kernelsQλ(Ey | Ex) andQ̃λ(Ey | Ex) satisfy the semiclassical condition (4.19)
which, taking into account our quantization convention−ih̄ = 1, takes the following form (up
to insignificantλ-dependent factors):

Qλ(Ey | Ex) ' exp
(−Fλ(Ey | Ex)) (6.5)



184 V B Kuznetsov et al

with the generating function of the Bäcklund transformation given by (2.14). Actually, the
semiclassical approximation is almost exact, up to a minor quantum correctionci − λ 7→
ci − λ − 1. This fact supports our thesis on the intermediate position of the DST model,
with regard to complexity, between the Toda lattice and the genericXXX spin chain. For
comparison, in the case of the Toda lattice the semiclassical formula forQλ(Ey | Ex) is plainly
exact [12], whereas for theXXX spin chain there is little hope of such a simple result.

For the purposes of the present section we need the expressions forQλ similar to
formulae (5.10) and (5.11) forRλ. The corresponding formulae are produced, respectively,
from (6.1) and (6.3) by the change of variablesxi = yiξi + byi+1.

The analogue of (5.10) is the formula

Qλ : ψ(Ex) 7→
∫
γ

dξ1 . . .

∫
γ

dξnWλ(Eξ)ψ(. . . , yiξi + byi+1, . . .) (6.6)

where

Wλ(Eξ) =
n∏
i=1

i

2π
0(λ + 1− ci)e−ξi (−ξi)ci−λ−1 (6.7)

valid for any complexλ, except the polesλ = ci − k, (i = 1, . . . , n; k = 1, 2, . . .) of
0(λ + 1− ci). The branch of each of many-valued functions(−ξi)ci−λ−1 in (6.6) is fixed by
making a cut along(0,∞) and assuming that−π 6 arg(−ξi) 6 π .

The analogue of (5.11) is the formula

Qλ : ψ(Ex) 7→
∫ ∞

0
dξ1 . . .

∫ ∞
0

dξn W̃λ(Eξ)ψ(. . . , yiξi + byi+1, . . .) (6.8)

with the kernelW̃λ

W̃λ(Eξ) =
n∏
i=1

e−ξi ξ ci−λ−1
i

0(ci − λ) (6.9)

valid for Reλ < min Reci . Together, formulae (6.6) and (6.8) defineQλ as a holomorphic
function ofλ ∈ C.

In the rest of this section we will show, thatQλ maps polynomials inx into polynomials
in y andλ, and derive explicit formulae for its action on the monomial basis inC[ Ex].

Before considering the general case we will give a brief account of the simplestn = 1
case. In this case we have only one variablex ≡ x1, the Lax matrix simplifies toL(u) = `(u),
so, without loss of generality, one can putc1 = 0. The trace ofL(u) gives rise to only one
integral of motion (number of particlesN )

t (u) ≡ trL(u) = u−N + b N = x∂. (6.10)

We assume thatN acts in the spaceC[x] of polynomials ofx spanned by the eigenbasis
{xm}∞m=0 of N

N : xm 7→ mxm m = 0, 1, 2, . . . . (6.11)

Forn = 1 andc1 = 0 formula (6.6) defining theQ operator turns into

Qλ : ψ(x) 7→ i

2π
0(λ + 1)

∫
γ

dξ e−ξ (−ξ)−λ−1ψ(y(ξ + b)) λ 6= −1,−2, . . . (6.12)

and (6.8), respectively, into

Qλ : ψ(x) 7→ 1

0(−λ)
∫ ∞

0
dξ e−ξ ξ−λ−1ψ(y(ξ + b)) Reλ < 0. (6.13)

Similarly, from (6.1) and (6.3) one gets, respectively,

Qλ : ψ(x) 7→ ieb

2π
0(λ + 1)

∫
γ ′

dx y−1

(
b − x

y

)−λ−1

e−x/yψ(x) γ ′ = y(γ + b) (6.14)
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and

Qλ : ψ(x) 7→ eb

0(−λ)
∫ ∞
by

dx y−1

(
x

y
− b

)−λ−1

e−x/yψ(x) y > 0. (6.15)

To calculate explicitly the action ofQλ on the basisxm one putsψ(x) = xm in (6.12), then
expands the binomial(ξ + b)m and applies, termwise, Hankel’s integral formula (5.12). This
calculation is very similar to the calculation ofRλskxj given by formula (5.13). The result is
that the monomials{xm}∞m=0 are the eigenvectors ofQλ:

Qλ : xm 7→ qm(λ)y
m (6.16)

the corresponding eigenvaluesqm(λ) being polynomials inλ of degreem, expressed in terms
of the Charlier polynomialsCm(λ; b) as

qm(λ) =
m∑
j=0

(
m

j

)
(−λ)jbm−j = bmCm(λ; b) (6.17)

(cf (5.13)).
As an immediate consequence, we have the commutativity [Qλ,N ] = 0, as well as (4.17a)

and (4.17b). Another corollary is thatQλ mapsC[x] into C[y, λ]. Note that formula (6.17)
implies the normalizationQλ : 1 7→ 1.

One can use the integral operatorQλ to derive a few well known formulae for the
orthogonal Charlier polynomials. For instance, puttingψ(x) = xm and y = 1 in (6.12)
or (6.13) one obtains integral representations for Charlier polynomials:

Cm(λ; b) = i

2π
0(λ + 1)

∫
γ

dξ eξ (−ξ)−λ−1

(
1 +

ξ

b

)m
(6.18)

and, respectively,

Cm(λ; b) = 1

0(−λ)
∫ ∞

0
dξ e−ξ ξ−λ−1

(
1 +

ξ

b

)m
(6.19)

(see [22]).
Equatingψ(x) in (6.12) or (6.13) with the generating function etx = ∑∞

m=0 x
mtm/m!

of the monomialsxm and taking the integral one gets the generating function of Charlier
polynomials

et
(

1− t

b

)λ
=
∞∑
m=0

tm

m!
Cm(λ; b). (6.20)

The recurrence relation for the Charlier polynomials [22, 23] is equivalent to the finite-
difference equation for the polynomialsqi(λ):

(λ− i + b)qi(λ) = bqi(λ + 1) + λqi(λ− 1) (6.21)

which coincides with Baxter’s equation (4.14) forn = 1 and proves, forn = 1, the operator
relation (4.17c).

From the explicit expression (6.17) for the polynomialsqm(λ) we conclude that they are
normalized by the conditionqm(0) = bm, or, alternatively,qm(λ) = (−λ)m + O(λm−1), as
λ→∞. In terms of the operatorQλ, it is equivalent to

Q0 = bN (6.22)

(see (6.10) for the definition ofN ) and, respectively, to

Qλ = (−λ)N + O(λN−1). (6.23)

The generalization of the above results to the multivariable case is quite straightforward. To
calculate explicitly the action ofQλ on the monomial basisxm1

1 . . . xmnn inC[ Ex] one substitutes



186 V B Kuznetsov et al

ψ(Ex) = xm1
1 . . . xmnn into (6.6), then expands the binomials(yiξi +byi+1)

mi and uses, termwise,
Hankel’s integral formula (5.12). Recalling definition (6.17) of Charlier polynomials, one
obtains the following expression:

Qλ : xm1
1 . . . xmnn 7→

n∏
i=1

bmi y
mi
i+1Cmi (λ− ci; byi+1/yi) (6.24)

from which it follows immediately that the normalization conditionQλ : 1 7→ 1 holds and that
Qλ mapsC[ Ex] into C[ Ey, λ]. The polynomiality of matrix elements ofQλ combined with the
commutativity [Qλ1,Qλ2] (4.17b) proves the polynomiality (4.17d) of the eigenvalues ofQλ.

Formula (6.24) also allows one to determine the normalization (4.16) of the eigenvalues
of Qλ. Taking the limitλ→∞ in (6.24) and using the asymptoticsCm(λ; b) = (−λ/b)m +
O(λm−1)we conclude that, as in then = 1 case,Qλ has the asymptotics (6.23) with the operator
N given by (1.2). In contrast, equality (6.22), generally speaking, cannot be generalized to
n > 1, with the exception of the homogeneous chain caseci ≡ 0, i = 1, . . . , n, when it is
replaced by

Q0 = bNU (6.25)

whereU is the translation operatorU : xi → yi+1.
As a final remark of this section, we point out yet another way of expressing the action of

Qλ. Substitutingψ(Ex) in (6.6) with the polynomialsω EmEy ∈ C[ Ex]

ω EmEy (Ex) =
n∏
i=1

(xi − byi+1)
mi

parametrized by the multi-indexEm = (m1, . . . , mn) and a vectorEy = (y1, . . . , yn) we obtain,
after performing the integrations, an elegant formula for the action ofQλ onω EmEy :

Qλ :
n∏
i=1

(xi − byi+1)
mi 7→

n∏
i=1

(ci − λ)mi ymii . (6.26)

Formula (6.26) seems to provide the most compact way to encode the action ofQλ on
polynomials (compare with formula (5.14) for the action ofRλ). Some caution is necessary,
however, when using it, since the parametersEy in ω EmEy coincide with the variables in the target
spaceC[ Ey] ofQλ. One way of interpreting (6.26) is to consider its left-hand side as a short-hand
notation for [Qλω

Em
Ez ]Ez=Ey . Another possibility is to extend the operatorQλ onto the polynomial

ringC[ Ex, Ey] assuming that it acts onEy trivially: Qλ(ψ(x)ϕ(y)) = ϕ(y)Qλ(ψ(x)). Formulae
similar to (6.26) also arise in the separation of variables for Macdonald polynomials [24].

It is a challenging problem to take formulae (5.14) and (6.26) as definitions ofRλ andQλ,
respectively, and to build the theory ofQλ in an entirely algebraic way.

7. Baxter’s equation

In the previous sections we have proved all the properties ofQλ from the list given in section 4
except Baxter’s difference equation (4.17c). In this section we give a proof of identity (4.17c)
based on the ideas of [12].

For our purposes, the best suited realization ofQλ is that given by formulae (4.18) and (6.1).
Recalling thatt (u) = trL(u) and thatL(u) is a 2× 2 matrix whose entries are differential
operators inxi , we can transform the left-hand side of (4.17c) as follows:

[Qλt(λ)ψ ](Ey) = tr[QλL(λ)ψ ](Ey) = tr
∫

dxnQλ(Ey | Ex)L(λ)ψ(Ex).
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Performing integration by parts we obtain

[Qλt(λ)ψ ](Ey) = tr
∫

dxn [L∗(λ)Qλ(Ey | Ex)]ψ(Ex) (7.1)

whereL∗(λ) is the matrix composed of adjoint differential operators(Ljk)∗ = L∗jk. For
example,∂∗ = −∂, (x∂)∗ = −∂x = −x∂ − 1, and so on.

Using the factorization (2.2) ofL(λ) into the product of elementary Lax matrices`i(λ)
and the factorization (6.1) of the kernelQλ(Ey | Ex) into the factorswi (6.2), we can represent
the kernel of the integral operatorQλt(λ) as

[Qλt(λ)](Ey | Ex) = tr `∗n(λ) . . . `
∗
1(λ)

n∏
i=1

wi = tr(`∗n(λ)wn) . . . (`
∗
1(λ)w1) (7.2)

where

`∗i (λ) =
(
λ− ci + 1 +xi∂xi bxi

∂xi b

)
. (7.3)

The possibility of the factorization (7.2) of [QλL(λ)](Ey | Ex) depends crucially on the fact
that the factorswi (6.2) each depend only on one variablexi . That is why we take the left-hand
side of (4.17c) to beQλt(λ) rather thant (λ)Qλ.

The rest of the proof parallels that of the spectrality property for the classical case given
in section 2. Introducing matrices̀̃i (λ) by the equalitỳ ∗i (λ)wi = wi ˜̀i (λ) and noting that

∂xi lnwi(yi+1, yi, xi) = ci − λ− 1

xi − byi+1
− 1

yi
(7.4)

we obtain

˜̀
i (λ) =

(
λ− ci + 1 +xi∂xi lnwi bxi

∂xi lnwi b

)
=
( b(ci−λ−1)yi+1

xi−byi+1
− xi

yi
bxi

ci−λ−1
xi−byi+1

− 1
yi

b

)
(7.5)

and [
Qλt(λ)

]
(Ey | Ex) = Qλ(Ey | Ex) tr ˜̀n(λ) . . . ˜̀1(λ) ≡ Qλ(Ey | Ex) tr L̃(λ). (7.6)

We note then that the gauge transformation˜̀i (λ) 7→ N−1
i+1
˜̀
i (λ)Ni with the gauge matrix

Ni =
(

1 byi
0 1

)
(7.7)

leaves trL̃(λ) invariant while making̃̀ i (λ) and, consequently,̃L(λ) triangular:

N−1
i+1
˜̀
i (λ)Ni =

( − xi−byi+1

yi
0

ci−λ−1
xi−byi+1

− 1
yi

b(ci−λ−1)yi
xi−byi+1

)
=
(
(λ− ci)wi(λ−1)

wi (λ)
0

ci−λ−1
xi−byi+1

− 1
yi

bwi(λ+1)
wi (λ)

)
(7.8)

where we used the identities
wi(λ + 1)

wi(λ)
= (ci − λ− 1)yi

xi − byi+1

wi(λ− 1)

wi(λ)
= xi − byi+1

(ci − λ)yi . (7.9)

As a result, we get the equality

tr L̃(λ) = bn
n∏
i=1

wi(λ + 1)

wi(λ)
+

n∏
i=1

(λ− ci)wi(λ− 1)

wi(λ)
(7.10)

which, obviously, proves (4.17c).
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8. Discussion

For the example of the quantum integrable DST model we have shown that the construction
of theQ-operator as an integral operator, in the style of [12], and as the trace of a monodromy
matrix with a special representation of the quantum group corresponding to the auxiliary space,
in the style of [14], can be combined naturally within an unified approach. The same approach
can be applied to other integrable models which are more general than the DST model, such
as the genericXXX magnetic chain. This work is in progress and the results will be reported
in a separate paper. For a particular case of the homogeneousXXX chain aQ-operator was
recently constructed in [25].

Another interesting problem is to build the theory of theQ-operator in a purely algebraic
manner starting from formulae (5.14) and (6.26).

In [14] it is argued that for the models governed by theA1-typeR-matrices there exist two
differentQ-operators corresponding to two differentq-oscilator representations ofUq [ŝl2].
Their eigenvalues correspond, respectively, to two linearly independent solutions of Baxter’s
difference equations analogous to (4.14). In the case of the DST model the secondQ-operator
can be obtained if we choose, in formula (5.4), another representationM(u − λ) of the
algebra (5.5), namelyM̃(u− λ) ∼ −M−1(λ− u)

M̃(u; s, ∂s) =
( −1 s

−∂s u + s∂s

)
. (8.1)

The correspondingQ-operator has, however, more complex nature than the one studied
in this paper. Its eigenvalues, for example, are not polynomial inλ. The problem is currently
under study.

We can point out the following application of our results to the theory of special functions
of many variables. Notice that the eigenfunctions of the quantum DST Hamiltonians are multi-
variable polynomials. The family of integral equations obtained for those polynomials provided
by theQλ-operator supplements their representation as Bethe vectors and can be used in effi-
cient numerical calculations of these special functions, for instance, solving integral equations
by iterations. Simple considerations of then = 2 case show that we deal with multivariable
analogues of the Heun polynomials. For special functions of such complexity the integral equa-
tions found might be the only explicit representations to exist because there is no hope to get, for
instance, an integral representation. So, the integral equations found for the special functions
which were initially defined as eigenfunctions of the commuting differential operators can be
used first, as already remarked, for generating advanced numerical methods of their calculation,
and, secondly, for finding various asymptotics. These applications are being worked on.
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