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Abstract. For the integrable case of the discrete self-trapping (DST) model we construct a
Backlund transformation. The dual Lax matrix and the corresponding ddddnd transformation

are also found and studied. The quantum analogue of &uwilBnd transformation-operator)

is constructed as the trace of a monodromy matrix with an infinite-dimensional auxiliary space.
We present th@-operator as an explicit integral operator as well as describing its action on the
monomial basis. As a result we obtain a family of integral equations for multivariable polynomial
eigenfunctions of the quantum integrable DST model. These eigenfunctions are special functions
of the Heun class which is beyond the hypergeometric class. The integral equations found are new
and they shall provide a basis for efficient analytical and numerical studies of such complicated
functions.

1. Introduction

The discrete self-trapping (DST) equation was introduced by Eille¢ek [1] to model the
nonlinear dynamics of small molecules, such as ammonia, acetylene, benzene, as well as
large molecules, such as acetanilide. In simple terms, it consists of asseioidissipative
anharmonic oscillators coupled through dispersive interactions. Due to the nonlinearity
this system can have complicated dynamical behaviour going from quasiperiodic motion to
chaos [2,3]. The DST equation is also found in connection with physical problems in different
areas such as the stabilization of high-frequency vibrations in biomolecular dynamics [4],
arrays of coupled nonlinear waveguides in nonlinear optics [5] and quasiparticle motion on a
dimer [6]. In the case of two degrees of freedera: 2 (DST dimer) the system is integrable
having, besides the Hamiltonian (energy), another conserved quantity, the norm (number of
particles in the quantum case). The integrability properties of the classical and quantum DST
dimer were studied in detail by several methods such as the number state method [7], the
algebraic Bethe ansatz [8] and the method of separation of variables [9]. For more than two
degrees of freedom an integrable case of the DST system was found and studied in [10]. This
integrable case is close to the Toda lattice and coincides fo2 with the usual DST dimer.
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The quantum Hamiltoniar#, of the integrable DST model contaifs + 1) parameters
c1,...,cy, bandis defined as a second-order differential operator (Aeee,d/9dx;)

H= Z(é X297+ (c; + D)xid; + bxia1dy) (1.1)

acting in the spac&€[x] of polynomials ofn variables{xi, ...x,} = X. In (1.1), and other
similar formulae, we always assume the periodic boundary conditigas= x;.
The HamiltonianH obviously commutes with the number-of-particles operator

N = Zn:x,-ai. (12)
i=1

As shown in section 4H and N can be included in a commutative ring of differential
operators generated by a basisnobperators, this fact allows one to claim the quantum
integrability of the system.

The multiplication operators; and the respective differentiatiofscan be considered as
generators of a Heisenberg algebra (creation/annihilation operators). There exists awell known
scalar product orC[x] (holomorphic representation) such thatand 3; become mutually
adjointEJ;r = x;. The corresponding Hamiltonidt is self-adjoint, however, only in the dimer
casen = 2. Inthe generat > 2 case, no involution rendering self-adjoint is known. The
Hilbert space structure is, however, quite irrelevant for the kind of problems we are interested
in and will be completely ignored throughout the paper.

The DST chain can be considered as a degenerate case of the Heisenberg magnetic chain,
though not as degenerate as the Toda lattice. This makes the DST chain a good tool for studying
various techniques applicable to integrable models since it requires more effort than the Toda
lattice but is still simpler than the generic magnetic chain.

The main purpose of this paper is to construct an analogue of Bagtesigerator [11] for
the integrable DST model. By definition, tli@-operator,Q;, shares the set of eigenvectors
with the Hamiltoniangd;, and its eigenvalues are polynomials.isatisfying a finite-difference
equation known as thBaxteror separation equationAs was shown in [12] for the example
of the periodic Toda lattice, in the classical limit the similarity transformation- Q,\Ole
turns into a classical &klund transformation that is a one-parametric family of canonical
transformations preserving the commuting Hamiltonians. Later, in [13], for the classical
Backlund transfomations the property sppectrality was described which is the classical
counterpart of the separation equation for the eigenvalugs, oin this paper we follow the
approach of [13] first studying the classical case and paying special attention to the spectrality
property of the correspondingaBklund transformation.

Our main result (see sections 4-7) is the following integral equation:

/ déy .. / dén[]"[érw1—c,->e—éf(—s,->""+1w}<...,y,-s,- +byja...)  (13)

1

=gy, - ) q(r) € C[2] (1.4)
for the polynomial eigenfunctiong < C[x] of the Hamiltonian (1.1)
Hy(x1,...,x,) = hr(xa, ..., x,). (1.5)

The structure of this paper is as follows. In section 2 we consider the classical version
of the integrable DST chain and describe its relation to the Toda lattice and the isotropic
Heisenberg magnetic chain. Our construction of tlelund transformation generalizes
well known results for the Toda lattice. Following [13], we also study the dual Lax matrix and
the corresponding dual&klund transformation in section 3.
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In section 4 we discuss the quantization of the integrable DST model and present a list of
properties of Baxter'®)-operator. In section 5, following the approach of [14], we construct
a Q-operator, Q,, for the quantum DST chain as the trace of a monodromy matrix with
an infinite-dimensional auxiliary space. In the spirit of [12], we considgras an integral
operator inC[x] and in section 6 find its kernel and contour of integration. In the same section
we study analyticity properties @; in the parametex, prove that its matrix elements in the
monomial basis are polynomialsinand give explicit formulae for its action on polynomials.
We consider in details the simplest= 1 case where th@-operator provides an integral
representation for classical orthogonal polynomials (Charlier polynomials). In section 7 we
prove thatQ, satisfies a finite-difference equation in the parametétinally, in section 8, we
discuss possible generalizations and applications of our results.

2. Classical case

In this section we consider the classical integrable DST chain [10]. The model is described in
terms ofn pairs of canonical variablgsX;, x;),i =1,...,n
{(Xi, X} ={xi,x;} =0 {(Xi, x;} =4 (2.1)

(the periodicity convention;+, = x;, X;+;, = X; is always assumed for the indices xof
andX;).

The canonical moment&; replace, in the classical case, the differential operaiors
As mentioned before, in the quantum case we do not make any assumptions about the self-
adjointness of the observables. Respectively, we allow the classical variables) to be
complex.

To construct: commuting Hamiltonians we introduce the Lax matkig:) (monodromy
matrix) as a product of local Lax matrice¥; (1)

L) =20,(u)...0xwu)l1(u) (2.2)
0 x, Xo) = <u — Ci;‘xiXi b;Ci )

whereb, ¢; € C are parameters of the model, ands the so-called spectral parameter of the
Lax matrix.
Denotmg by id the unit 2x 2 matrix and introducing notations for the tensor products

(2.3)

E =LQ® |d2, £ = id, ®¢ one establishes thematrix identity [15]

{Zi(ul), Zj(uz)} = [ri2(u1 — u2), Zi(ul)ﬁj(uz)]&j ria(u) = _;Plz (2.4)

whereP;, is the permutation operator it ® C2. From (2.4) the corresponding identity for
the monodromy matrix

1 2 1 2
{L(u1), L(u2)} = [rio(us — u2), L(u1)L(u2)] (2.5)

is derived in the standard way [15] which, in turn, ensures the commutativity of the spectral
invariants¢ () and d(u) of the matrix L(u) defined as coefficients of its characteristic
polynomial

detv — L(u)) = v — t(u)v +d(u). (2.6)

Since det; (u) = b(u — ¢;), the determinani (1) = detL(u) = []}_, b(u —¢;) is scalar,
and the only nontrivial spectral invariant is the trace):

t(u) =tr L(u) = Lua(u) + Loo(u) (2.7)
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which serves as a generating function of commuting independent Hamiltaijans
tw) =u"+ Xn:(—l)iHiu”’i. (2.8)
As a corollary of (2.5)i:\/1e have the commutativityrafi)
{t(u1), 1 (uz)} =0 (2.9)

and, consequently, the commutativit§f;, H;} = 0 of the Hamiltoniang;.
A direct calculation shows that

n n
Hi=N+) ¢ Hy=3H —H -3} ¢ (2.10)
i=1 i=1
where
N = ZX,‘X[ H = Z(%X?XIZ +Cl'X,'Xl' +bxi+1Xi) (211)
i=1 i=1

ensuring that the polynomial ring of commuting Hamiltonians contains the number of particles
N, and the HamiltoniarH .

Note that the--matrixri2(u) in (2.4) is the same as for the isotropic Heisenberg magnetic
chain and the Toda lattice [15], which puts these integrable models into the same class. Indeed,
the Toda lattice is a degenerate case of the DST chain. To demonstrate this, it is sufficient to
make a constant shift — u + b~ of the spectral parameter #(u) given by (2.3) and take
the limit

b—0 x; =€ (b +p;)+00b) X, =e% (2.12)
contracting the ‘oscillator’ algebra;, X;, x; X;) into the Euclidean Lie algebr@™%, p;). In
the limit ¢; (1) turns into the elementad+matrix for the Toda lattice:

u—c;—p; €

() — ( A ) (2.13)
(the ¢; shifts become irrelevant since they can be absorbed into a simple canonical
transformationp; — p; — ¢;). On the other hand, the DST model, in turn, is a degenerate
case of the HeisenbelgX X magnet corresponding to the contraction ofth€) Lie algebra
into the oscillator algebra. The DST model occupies an intermediate position between the
Heisenberg and Toda models.

In this paper we take the Hamiltonian point of view on th&cBlund transformation,
according to which the &cklund transformatiom, is a one-parameter family of simplectic
maps from the canonical variableﬁ, X) to the canonical variabled’, y) possessing certain
characteristic properties (see [13] for a detailed discussion). For Hamiltonian integrable
systems allowing a description in terms of thenatrix algebra (2.5) an algorithmic method
has recently been found for constructingé@cRlund transformation [16,17]. Since the method
has been described in detail in the cited papers, here we present only the results.

Asinthe case of the periodic Toda lattice [12,13], it is convenient to describe the canonical
transformationB,, in terms of the generating function

N - x; — byiv1 byir1 — X;
F.G | %) =nh+ <—+(A—c,~)ln— (2.14)
’ ; Vi (A — ci)by;
aF, 1 a—c
X,= o2y ATG (2.15)
ox; ¥ Xxi—byi
JdF: . — by;
Y, = — 2 = px, g+ Ay (2.1%)

ayi Vi
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To prove thatB;, preserves the Hamiltoniars
Hi(X,%) = Hi(Y,5) (2.16)

we proceed in the same manner as in [12, 13] for the periodic Toda lattice. Introducing the
matrices

oo (1 —byi+1
M;(u) = (Xi U byi+1Xi> (2.17)

one then directly verifies the equality

M; ()i (u; Xi, xi) = € (u; Yi, yi)M;—1(u) (2.18)
from which it follows thatB; preserves the spectrum of the Lax matkift)

M, (u, WL (u; X, %) = L(u; ¥, $)M, (u, A)

which, in turn, ensures the invariancerd#) and, therefore, off; (2.16).
To formulate thespectrality property{13] of the Backlund transformation we introduce
the quantityu canonically conjugated in a sensejto

Cl)by, Cz)sz
Inpu=—-——>== E In = | | 2.19
o byz+1 — X byi+1 — ( )

The spectrality of the Bcklund transformation means that the w) pair lies on the
spectral curve of the Lax matrix

det(x — L(2)) =0. (2.20)
To prove it, we again follow [13]. We observe that foe= A the matrixM; (u) degenerates
v (L by Y\ _ (1) A —byird)
M;(A) = (Xi _b)’i+1Xi) = <X,-> (2.21)
and its null-vectorw; can be found explicitly:
M;(Mw; =0 w; = (byfl). (2.22)
Then noting the identity
)\, — ¢ b i
Li(Nwi—1 = uwi (2.23)
byiv1 — x;

we conclude that
L)w, = pw, (2.24)

whence (2.20) follows immediately.
The commutativityB;, o B,, = B;, o B, is an immediate consequence of the invariance
of Hamiltonians and their completeness, see [13].
Note thathl(u) and¢; (u) have, as functions of, essentially the same structure, up to
a shift ofu and a scalar factor. The fact is by no means a coincidence: see [17] for a detailed
explanation.

3. Dual Lax matrix

We conclude the study of the classical case by presentinguhklLax matrix and the dual
Backlund transformation for the DST model. In [10] two different Lax matrices were found
for the integrable DST system, thex2 Lax matrixL(«) and also the x n Lax matrix. This
bigger Lax matrix did not contain a spectral parameter. Here we presenkanlLax matrix
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L(v) containing a spectral parametarhich is dual ta. (1) in the sense that the corresponding
spectral curves are equivalent up to interchanging the spectral paramateis

" —v)det(u — L(v)) = det(v — L(u)). (3.1)

To produce the dual Lax matri&(v) we take an eigenvectéi (u) of L (u) corresponding
to the eigenvalue (for brevity, we will not mark the dependence @iin 6)

L(u)01 = voy (3.2)
and define by inductiog; as
9,‘+1 = 6,(u)9, = 1, (A (33)

From (3.2) it follows that,+; = v6;. The functiond; (1), when properly normalized, is
called theBaker—Akhiezer functionDenoting the components of the vectprasg; andy;,
we present (3.3) explicitly as

Yisr ) _ (u—c—x;X; bx; @i
()= ) () @

Then, splitting the components and taking into account the quasiperiodicity condition
0,+1 = v01, we arrive at the following linear equations fprandq;:

uQ; =(pl~+1+(c,»+x,~X,-)g0,~ —bxﬂ//j i =1,,..,I’l—l (3&)
u@, = ve1+ (cp + X, Xp)n — bx, Y, (35))
wi.q.l:—Xi(pi"'blﬂi i :1,...,1’1—1 (3&)
le = _ann +an~ (38))

Eliminatingy,; we can write down the linear problem for the vectowith the components
@; in the matrix form:

Y1

LW)P =ud d=|... (3.7)
Pn

where the matrixC (v) defined as

n
L) =@w—-b")"" Z b X XKEji + vEp1 + Z b o XE ji

=1 ik
n n—1
+chEj,- + ZEj,ﬁl (3.8)
i=1 =1

is the dual Lax matrix we were looking for. Hefg, is then x n matrix with the only non-zero
entry(E ;) jx = 1. The proof of identity (3.1) is an exercise which we leave to the reader. For
the caseb = 1 andv = —1 the dual Lax matrix for the DST model was first found in [10].
For examples of Lax matrices duality in other integrable models see [18].

The Backlund transformatio,, corresponding to the dual Lax operatdfv) is given
by the same equations: (2d)5(2.1%) and (2.19). The important difference, however, is that
now u is a free numerical parameter of thédklund transformation, whereasbecomes a
dynamical variable determined from equation (2.19). Equality (2.19) is now reinterpreted as
the equation defining the variable The generating function &, is the Legendre transform
of F,. (¥ | X) with respect to..

The properties of the dualdklund transformatioBs,, are proved in the same manner as
those ofB;, (see also [13], for the Toda lattice case). For the proof we need a riat(i®
playing for £L(v) the same role thaw,, («) played forL (u).
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Let 6; be defined ag; = M,_16;. From (2.18) it follows tha¥; is a Baker—Akhiezer
function for ¢;(u; Y;, y;). The first component of the equaliy = M;_.6; reads@; =
@i — by;y;. Substitutingy; from the solution of the system (&f (3.6b) we obtain the
correspondenc® = M (v)® with the matrixM (v) defined as

n n

M) = =" bRy X Ep + Y b TRy Xy B+ Y Ej. (3.9)
Jiok=1 j>k j=1
The invariance of the spectrum gfv) follows from the identity
MW L@; X, %) = L(; Y, HIM(©). (3.10)
The spectrality is expressed as the identity
det(x — £(w)) = 0. (3.11)
To prove (3.11) it is sufficient to note that the mattt(v) degenerates as= u
detM(u) =0 (3.12)

and the corresponding null-vect@rdefined by the recurrence relation
Qiv1 _ blei —Myin

= i=1...,n-1 (3.13)
Q; X; — byi+1
is, by virtue of (3.10), also an eigenvector@fu) corresponding to the eigenvalue
L()Q = AQ. (3.14)

Since the Toda lattice is a degenerate case of the DST modelxtid ax matrix for the
Toda lattice can be obtained, as one could expect, fronCouy matrix in the limitb — 0,
as in (2.12). The result is a variant of the standard n Lax matrix for the periodic Toda
lattice [19]:

L) =b""+ L") +Ob) (3.15)
n n—1 n—1
L) = v e M Ey, +vE,1 + Z(Pj tej)Ej;+ Z S R Z Ej j+1.
j=1 j=1 j=1
(3.16)

Similarly, from M (v) one obtains the corresponding matrix for the Toda lattice, see [13].
The Poisson brackets for both dual Lax matri¢és) can be expressed in the generalized
r-matrix form [20]

1 2 1 2
{L(v1), L(v2)} = [r12(v1, v2), L(1)] — [r21(v1, v2), L(v2)] (3.17)
the ‘non-unitary’r-matrix having the form
1
rio(vy, v2) = <U2 oAy ) Eji ® Ey; (3.18)
172\ k3 k=

andra1(v1, v2) = Pr(vz, vi)P, whereP = >, Ejx ® Ey; is the permutation matrix in
C"®C".

The non-unitary--matrix (3.18) in the case of Toda’s Lax matrix can be unitarized by a
gauge transformation:

L) =vLrvTt v =) ei?E, (3.19)
j=1
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obtaining, for the new Lax matri£(v), the standard unitarg,_;-typer-matrix

v1t+ v 1 1 ( >
t12(v1, V2) = E:QFE;:;+ v +v E . QE; 3.20
12\V1, V2 U]__Uzj; Jj Jj V1 — vs Z;j 1; jk kj ( )
t12(v1, v2) = —t21(v1, V2) (3.21)
1 2 1 2
{€(v1), £(2)} = [r12(v1, v2), £(v1) + £(v2)] (3.22)

see, for instance, the second paper in [19].

4. Quantization

Inthe quantum case the canonical momentare replaced with the differentiatiofis= 9/9x;
(having no intent to discuss the conjugation properties of the observables, we discard the factor
ik to simplify the notation). To preserve the commutativity of the Hamiltoni&isipon
gquantization one needs to choose the operator ordering in a special way.

The necessary algebraic framework is given by the quantum inverse scattering or the
R-matrix [11, 21] method. Defining the local quantum Lax matrix as

u—=«c —X; 8,' bxi
= (1) @.1)
one verifies the commutation relation
1 2 2 1
Rio(uy — u2)l(u1)l(uz) = €(u2)€(u1) Rio(us — up) (4.2)
where
Rip(u) = u + Py (4.3)

is the standard L (2)-invariant solution to the quantum Yang—Baxter equation. The quantum
Lax operator, or monodromy matrix,(x) and its trace («) are defined then by the same
formulae, (2.2) and (2.7), as in the classical case. From (4.2) one then derives in a standard
way the similar commutation relation

1 2 2 1
Rip(uy — u2) L(u1) L(up) = L(uz)L(u1) Rio(uy — uz) (4.4)
for L(u), from which the commutativity of (1)
[t(u1), t(u2)] =0 (4.5)

follows immediately. The commutative quantum Hamiltonidisare then defined, as in
the classical case (2.8), as coefficients of the polynontigl. It is easy to see thaf; is a
differential operator of orderleaving invariant the spad&{x] of polynomials ofxy, ... x,. In
particular,H; and H, are given by the formulae (2.10) witi andH given by (1.2) and (1.1),
respectively.

The main problem in the quantum case is the spectral problem for commuting differential
operators, quantum Hamiltonia(d;}"_,:

Hipyr(x1, ..., X)) = hiyr (x1, ..., X,) ¥(x1,...,x,) € C[X]. (4.6)
One can describe the spectrum and eigenvecto#; obr, equivalentlys (1) using the
well-developed machinery of tredgebraic Bethe ansaf21]. Defining the vacuum staté)
as the unit function0) (x) = 1 in C[x] we note that

L]0y =0 L11(u)|0) = or11(u)|0) Lo(1)|0) = or22(u)|0) 4.7)
where

o) =[Jw—c) oz =b" (4.8)
i=1
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Defining theBethe vectory; (x1, ..., x,) € C[X] parametrized byr complex numbers
vj as
Wﬁ(xl» cee xn) = |Ula ceey Um) = LlZ(Ul) ce LlZ(vm)|O> (49)
one can prove [21], using the commutation relations (4.4),|that. ., v,) is an eigenvector

of t(u), for anyu € C, if and only if the parameters; satisfy the system of algebraBethe
equations

m —v. +1
| IO k=1....m (4.10)
joive—vi—1 o22(vk)

and the corresponding eigenvalug:) of ¢ (u)
t)|ve, ..., o) =1t@)|V1, ...y V) (4.112)

is given by the formula

ru—vj—1 ru—v;+1
tw) = an(@) [ [ —— +an) [ [ —2—. (4.12)
=1 u—Uv; =1 U —1v;

It is usually assumed that Bethe eigenvectors are complete, at least for generic values of
parameters. The proof of the conjecture is, however, a difficult task, and is available only for
a few models, see [21] for a discussion.

In his seminal study [11] of the integrablY Z and X X Z spin chais R J Baxter has
pointed out that the equations similar to our equations (4.10) and (4.12) can be reformulated
equivalently as a finite-difference equation in a certain class of holomorphic functions.
Adapting his reasoning to our case we introduce the polynogniaj v) in » whose zeros
are the Bethe parameters

o) =]]r-v)  reC. (4.13)
j=1

It is then easy to see that the following finite-difference equation of second order for
¢ (1; V):
(A 0)T(A) = ana(MP (A — L V) + az2(A)p (A + 1 9) (4.14)

is equivalent to the system of equations (4.10){fg)"_,, and to equation (4.12) far(2). To
show this, it is sufficient to divide both sides of (4.14)d¢h) and take residues at= v;. The
equation (4.14) is called thgaxteror separationequation. The reason for the latter name is
that an identical equation arises when solving the model via the separation of variables method
(see [13] for more on relation betweé&nroperator and quantum separation of variables).

Now we are able to describe the problem we are going to study in the remaining sections
of this paper. We are looking for a one-parameter family of opera@gracting inC[x] such
that Q; shares withr (1) the same set of Bethe eigenvectors, and the eigenvalugsf O,

Oilvt, s U) = g1, - .o, Um) (4.15)
are polynomials in. satisfying Baxter's equation (4.14). Up to a normalization coefficient
k3, depending on the eigenvector, the polynomigls) are proportional to the polynomials
¢ (x; v) defined by (4.13):

g\ = kip(As v, ..., Uy) = kA" + O(A" L) A — 00. (4.16)

Instead of dealing with eigenvectors and eigenvalues it is more convenient to characterize

0, by the following operator identities which are equivalent to the above characterization,
assuming the completeness of Bethe eigenvectors. We demarn@,tbatnmute withe (1)

[t(w), 0:] =0 (4.17)
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and self-commute

[Q1, Q3] =0 (4.1D)
as well as satisfy the finite-difference equation
0it()) = Qa [ [ — i) + 1" Qs (4.17c)
i=1
In addition, the eigenvalues @f; should be polynomial in
q(1) € C[A]. (4.17d)

The above conditions by no means defipg uniquely. Apparently, one can construct
infinitely many Q-operators just by fixing arbitrary normalization coefficiertsfor each
eigenvectorjv) in (4.16). The difficult problem is to find an explicit expression fopa
operator. Baxter succeeded in solving the problem in casé¥of and X X Z spin chains,
having given an expression f@;, as a trace of a monodromy matrix [11]. However, his
formulae do not survive when passing to the limiting case offtkeX spin chain, governed
by theSL(2) invariant R-matrix (4.3).

In the case of the quantum periodic Toda lattice, which is another model governed by
the R-matrix (4.3), a solution was found by Pasquier and Gaudin [12]. Instead of trying to
constructQ; as trace of a monodromy matrix, they considegedas an integral operator

0, Y@ > /dxl...fdxn Q.G 1 DY@ (4.18)

having given an explicit expression for its kerggl(y | X). They also discovered an important
relation between the kern€l, (y | x¥) and the generating functioFi, (y | ¥) of the classical
Backlund transformation expressed by the semiclassical formula

0,610 ~exp(~pFGID) o @19

The classical Bcklund transformatiorB; is thus the classical limit of the similarity
transformatior® — Q,00;*.

Recently, it was found [14] how the original Baxter’s construction [11] can be generalized
to produceQ-operators for the models governed by thetype R-matrices, such as thex Z
spin chain and sine—Gordon model. According to [14], is constructed as the trace of a
monodromy matrix built from the local Lax operators corresponding, in the auxiliary space,
to the special infinite-dimensional representations of the quantum gm@] (g-oscillator
representations).

In the subsequent sections we constru@-aperator for the quantum DST model and
prove its characteristic properties. Our approach combines those of [12,14]. Similarly to [14],
we construct oup-operator as the trace of a monodromy matrix with an infinite-dimensional
auxiliary space. In the spirit of [12], we fin@; as an integral operator acting @{x] and
present several equivalent expressions for it.

The Q-operator being found as an integral operator will give integral equations for the
eigenfunctiong/;. The advantage of this transformation of the differential spectral problem
into integral spectral problem is that it gives an alternative to the Bethe representation of
multivariable special functions. The general approach of constructi@goperator for a
given integrable system will be of even greater importance in situations when the Bethe ansatz
does not work.

5. Construction of the Q-operator

The structure oD, is similar to that of («) given by (2.2) and (2.7). We construgt, as the
trace of a monodromy matrix built of the elementary bIoRI%écl,. Suppose thak, is a linear
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operator fronC[s, x] to C[z, y]. The space€&[x] andC[y] are referred to agquantumspaces
andC[s] andC[], respectively, aguxiliary ones (see [21]). To construgk, we introducen
copiesR|” = of R, assuming thaR}” _ : C[s;, x;] = C[si+1, yi] (remember the periodicity
convention,n + 1 = 1) and extendingR{” . on C[x;] (j # i) as the unit operator. The
monodromy matriR;", ... R{Y  then acts fronC[s, ¥] into C[s1, 7], and Q;. is obtained
by taking the trace in the auxiliary spaCs]:

0, =tr, R . RY . (5.1)
SupposindR;, to be an integral operator
R; : ¥(s, x) — /dx[ds Ry, y | s, x)¥ (s, x) (5.2)
for the kernelQ, (¥ | ¥) of 0, we have
Q01X = /dsn e / dSll_[Rxfc,» (si+1, i | 80, Xi). (5.3)
i=1
To ensure the commutativity (), Q;] = O itis sufficient to demand th&, intertwines
M@ —x;t,0)€(u; y, 3y)R; =R, £(u; x, d)M(u — A5 s, 95) (5.4)

the local Lax operatof (1) and some other representatidn(z — 1) of the same algebra (4.2)

1 2 2 1
Ry — up) M) Muz) = Mu) M) R(u1 — uo) (5.5)

with the sam&R-matrix (4.3). The proof of (4.18) then follows by a standard argument[15,21].
Similarly, to prove D;,, 0,,] = 0 (4.1D) it is sufficient to establish the Yang—Baxter
identity

/dh/dlzfdy Ry, (w1, w2 | 11, )Ry, (1, 2 | 51, V) Roy (t2, ¥ | 52, X)

= /dh/d&/dy R, (W2, 7 | t2, YRy (w1, ¥ | 11, X) Ry, (t1, 12 | 51, 52)

(5.6)
with some kerneR,;.
The representatioM (u — 1) of the algebra (5.5) should be chosen in such a way that the
resulting Q,, as a function of, satisfy Baxter’s finite-difference equation (4cland have
polynomial eigenvalues (4.4y. As we shall show, for this purpose one can take

Mus s, 9) = (” o i) (5.7)

coinciding essentially with¢(x) with » = 1 and¢; = 0. For the Yangiany[sls]
representation (5.7) plays the same role agtbscillator representation plays for the quantum
groupuq[s/l;] in [14]. Having fixed M (u) by (5.7) we get, from (5.4), a set of differential
equations for the kern&, (¢, y | s, x) of R,

u—A—1to t u—ydy, by
( —0; 1) ( —dy b Ra(t,y|s,x)
u+1l+x9, bx U—A+1+s9, s
< Oy b ) ( 9 1) Ra(t,y|s,x) (5.8)

(in the right-hand side we have used integration by parts and the ideritities —a,
(x0,)* = —9,x = —1 — x9,). Equations (5.8) determire, up to a scalar factgs,:

—a—1
Rx(t,yIs,x)=m8(s—by)y_lexp<t;x> (t;x> . (5.9)
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It remains to choose the factpy in (5.9) and the integration contour in (5.2) in such a
way thatR; : C[s, x] — CJt, y, A].

We describe first the final formula f@&; and equivalent expressions and then prove the
polynomiality property. As the basic definition Bf, we choose the following formula:

R; @ ¢ (s, x) > %F(H 1) / dg €75 (&) My (by, yE +1). (5.10)
Y

The infinite integration contouy is shown in figure 1. The branch of the many-
valued function(—£)*~1 in (5.10) is fixed by making a cut alon@, co) and assuming
that—n < arg(—¢) < 7.

From (5.10) it is apparent th&, , as a function of., is analytic inC except at the poles
A =-—1 -2, ...of the factorT' (A + 1). As shown below, in fadR, continues analytically on
the whole complex plane.

¢

Figure 1. Integration contouy .

Indeed, for Re. < 0 one can pull the contogrover the cut0, co) and replacgfy dé (&)
with f0°° dé[ f (& —i0) — f (& +10)] which results in the formula

1
(=)

[e]
R, (s, x) —~ / de e S e Ly (by, yE +1) Reix <0 (5.11)
0
which is analytic im. = —1, =2, .... The branch of 1 in (5.11) is fixed by the condition
argé = 0.

To putR,; in the form (5.2) convenient for checking the intertwining relation (5.8) one has
to make the change of variables= y& +t in (5.10). The resultis given by formula (5.2) with
the kernelR, given by expression (5.9) with the scalar fagigr= zi—nl“(k +1) and integration
in x taken over the contoyr’ = yy +¢t. As for the integration contour i, it needs only to
pass through the point= by because of the factdi(s — by) in R;.

In the same way, from (5.11) one again obtains formula (5.2) with kernel (5.9) with the
different scalar factop, = 1/T'(—A) and integration inx taken over the ray starting from
x =t and going in the direction of/ |y|.

Now we have the full description of the operalyrand can start to study its properties. By
constructionR, satisfies relation (5.4) from which the commutativity{), 0;] = 0 (4.1 &)
follows. By direct calculation one can also establish the Yang—Baxter identity (5.6) with the
kernelR, = R;|,_1 thus proving the commutativityd,,, Q;,] = 0 (4.1h). The proof of
the remaining properties @, from the list presented in section 4 is given in sections 6 and 7.

We conclude this section by giving an alternative descriptioRpfin terms of the
polynomial bases which complements the above ones in terms of integral operators.

To calculate explicitly the action d&, on the monomial basis'x/ in C[s, x] one puts
¥ (s, x) = s*x7 in (5.10), then expands the binomiak + )/ and applies, termwise, Hankel’s

integral formula [22]
/ de et (—g)t= -2
14

_m. (5-12)
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Using the Pochhammer symb@l),, = I'(c +m)/T'(¢) = c(c +1)...(c + m — 1) one
can write down the result as

J .
R, : s*x/ Z ( ,fl ) (=)t Ty PR = £ bRC (A5 1)) (5.13)
m=0

whereC,, (); b) are the so-calle@harlier polynomialq22, 23]
Cm()\; b) = ZFO |:_m;_)\; _b_l:| .

Formula (5.13) proves the polynomialif§t, : Cl[s,x] — C[tz, y,A]. Note that the
normalization ofR, is chosen in such a way that : 1+ 1.

The action of R, on polynomials can be described in an even more compact way.
Substitutingy (s, x) = s¥(x — ¢)7 into (5.10) and using again Hankel's formula (5.12) one
obtains the most economic descriptionigf

Ry @ sk — 1) > yI*(—n) ;b (5.14)
At the end of the next section we will discuss (5.14) and similar formulae in more detalil.

6. Analytical properties of the Q-operator

To produce a description @, as an integral operator (4.18) we substitute expression (5.9) for
the kernelR, found in the previous section into formula (5.3). The integratios is easily
performed due to the delta-function factorsidn and, corresponding to the two choices of the
factorp; in (5.9) and the integration contour in (5.2), we obtain two equivalent descriptions of

0.
The first formula forQ, is given by (4.18) with the kerned; (7 | X)

Q3 | %) = [ Jwi®s yiva yio x) (6.1)

i=1
where

[ Ly by —x T byi+1 — x;
w; (A; Yis1, Yi» Xi) = EF(A tl—c)y, | ——— exp( ——— (6.2)

1 1
and integration iny; is taken over the contoyr;, = y;y + by;+1, whereas the contoyr is
defined in the previous section. 5
The alternative formula is given again by (4.18) with the ke@gly | X)

9,5 %) = | | Wi (A i1, Yis Xi) (6.3)
i=1
where

y yit X — byis \ byis1 — X;
Wi (A3 Yis1s Vi Xi) = exp| ——— | (6.4)
L(ci —A) Vi Vi

and integration irx; is taken over the straight ray starting from= by;,; and extending to
infinity in the y;/ |y;| direction.

Note that the kernel®; (3 | X) andQ, (¥ | ¥) satisfy the semiclassical condition (4.19)
which, taking into account our quantization conventiait = 1, takes the following form (up
to insignificanti-dependent factors):

(G | %) ~exp(—F. (5 | X)) (6.5)
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with the generating function of thed@klund transformation given by (2.14). Actually, the
semiclassical approximation is almost exact, up to a minor quantum corregtion.

¢i — X — 1. This fact supports our thesis on the intermediate position of the DST model,
with regard to complexity, between the Toda lattice and the ged&ki& spin chain. For
comparison, in the case of the Toda lattice the semiclassical formut, fgr | X) is plainly
exact [12], whereas for thE X X spin chain there is little hope of such a simple result.

For the purposes of the present section we need the expression, fsimilar to
formulae (5.10) and (5.11) fdR,. The corresponding formulae are produced, respectively,
from (6.1) and (6.3) by the change of variables= y;&; + by;+1.

The analogue of (5.10) is the formula

0, U@ /dsl.../dsn WoENW (. i+ byisns ) (6.6)
Y Y

where

. L
=|[==re+1-cpHed(g) >+ 6.7
Wi (&) EZN ( ci)e ¥ (—&) (6.7)
valid for any complex., except the poleg = ¢; —k, (i = 1,...,n; k = 1,2,...) of
I'(A + 1 — ¢;). The branch of each of many-valued functiqast;)“—*~ in (6.6) is fixed by
making a cut along0, co) and assuming thatz < arg(—§;) < 7.
The analogue of (5.11) is the formula

0, Y (X) — /o d$1~--/(; dg, Wh@E) Y (..., ik +byist, . ..) (6.8)

with the kernely,

. n efgi gic,-f)hfl

WiE) = 11 e (6.9)
valid for Rer < min Rec;. Together, formulae (6.6) and (6.8) defige as a holomorphic
function ofx € C.

In the rest of this section we will show, th&;, maps polynomials in into polynomials
in y and, and derive explicit formulae for its action on the monomial basiS][i.

Before considering the general case we will give a brief account of the simplest
case. In this case we have only one variabte x1, the Lax matrix simplifies td. (1) = £(u),
so, without loss of generality, one can put= 0. The trace of_(u) gives rise to only one
integral of motion (hnumber of particlgs)

tw)=trL(u)=u—N+b N = x0. (6.10)
We assume thaV acts in the spac€[x] of polynomials ofx spanned by the eigenbasis
{x™}_, of N

N x" — mx™ m=0,12,.... (6.11)
Forn = 1 andc; = 0 formula (6.6) defining th& operator turns into
Qi Y(x) > érw 1)/ dee* (=5 Y (E+b)  r#E-L-2...  (6.12)
v
and (6.8), respectively, into
Q) Y (x) > ! / dt e * Ly (y(E + b)) Rex < 0. (6.13)
I'(=2) Jo

Similarly, from (6.1) and (6.3) one gets, respectively,

) —A—1
05 Y (x) —~ E1"()\+1)/ dx y* (b— )—C> ey (x) Y =y(y+b) (6.14)
2 v y
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and
0o —A—1
01 V() = 5y | y (g - b) e yx)  y=>0. (6.15)

To calculate explicitly the action a®; on the basis™ one puts) (x) = x™ in (6.12), then
expands the binomigk + b)" and applies, termwise, Hankel's integral formula (5.12). This
calculation is very similar to the calculation Bf s*x/ given by formula (5.13). The result is
that the monomialéx™}°°_, are the eigenvectors @;.:

05 x" = gu(W)y™ (6.16)

the corresponding eigenvalugs(i) being polynomials in. of degreen, expressed in terms
of the Charlier polynomial€,, (A; b) as

_ m A KM= pm .
Gm (M) ; ( ; )( 2)jb b"Cpu(3; b) (6.17)
(cf (5.13)).

As animmediate consequence, we have the commutat®@ijtyN] = 0, aswell as (4.18)
and (4.11). Another corollary is thaQ; mapsC[x] into C[y, A]. Note that formula (6.17)
implies the normalizatio; : 1+ 1.

One can use the integral operatgs, to derive a few well known formulae for the
orthogonal Charlier polynomials. For instance, puttiagr) = x™ andy = 1 in (6.12)
or (6.13) one obtains integral representations for Charlier polynomials:

by = oyt E)"
Cp(h:b) = F(A+1)/ydgef( £) <1+b> (6.18)
and, respectively,
1 o0 e £\"
ch) — Eg—a—1 S
Cn(X;b) = F(—x)fo dsev¢ <1+b> (6.19)

(see [22]).

Equatingy (x) in (6.12) or (6.13) with the generating functioff e= Y >, x"¢" /m!
of the monomialsx™ and taking the integral one gets the generating function of Charlier
polynomials

A 00 m
t t
¢ (1 — E) = Z Mcm(x; b). (6.20)

The recurrence relation for the Charlier polynomials [22, 23] is equivalent to the finite-
difference equation for the polynomiajs(1):

A—i+b)g;(A) =bg;(A+1) +rq;(A — 1) (6.21)
which coincides with Baxter’'s equation (4.14) for= 1 and proves, forn = 1, the operator
relation (4.1¢).

From the explicit expression (6.17) for the polynomig)g)) we conclude that they are
normalized by the conditiog,,(0) = b", or, alternativelyg,,(A) = (—=A)" + O(A" 1Y), as
A — oo. In terms of the operatap,, it is equivalent to

m=0

Qo =b" (6.22)
(see (6.10) for the definition d¥) and, respectively, to
0, = (=N +00uN ). (6.23)

The generalization of the above results to the multivariable case is quite straightforward. To
calculate explicitly the action af, on the monomial basis"* ... x» in C[X] one substitutes
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Y (X) =x7"" ... x" into (6.6), then expands the binomials; +by;+1)"™ and uses, termwise,
Hankel's integral formula (5.12). Recalling definition (6.17) of Charlier polynomials, one
obtains the following expression:

Qs i Xyt x> 1_[ D"y Cm, (= ci5 byisa/ i) (6.24)
i=1

from which it follows immediately that the normalization condition : 1 — 1 holds and that

0, mapsC[x] into C[y, A]. The polynomiality of matrix elements @, combined with the

commutativity [Q;,, Q5] (4.17b) proves the polynomiality (4.1J of the eigenvalues aof; .
Formula (6.24) also allows one to determine the normalization (4.16) of the eigenvalues

of Q0,. Taking the limitA — oo in (6.24) and using the asymptoti€%, (A; b) = (—A/b)™ +

O(x~1) we conclude that, asin tme= 1 caseQ; has the asymptotics (6.23) with the operator

N given by (1.2). In contrast, equality (6.22), generally speaking, cannot be generalized to

n > 1, with the exception of the homogeneous chain ease 0,i = 1,...,n, whenitis

replaced by

Qo =b"U (6.25)

whereU is the translation operatdf : x; — y;+1.
As a final remark of this section, we point out yet another way of expressing the action of
0;.. Substitutingy (%) in (6.6) with the polynomialg?’ e C[x]

of () = [ [ = byir)™
i=1

parametrized by the multi-index = (my, ..., m,) and a vectol = (y1, ..., y,) we obtain,
after performing the integrations, an elegant formula for the actiap,obn a)’;’
O, : l_[(xi — byi)"
i=1 i=1
Formula (6.26) seems to provide the most compact way to encode the actipnaf
polynomials (compare with formula (5.14) for the actionRyf). Some caution is hecessary,
however, when using it, since the paramefeis »” coincide with the variables in the target
spaceC[y] of Q,. One way of interpreting (6.26) is to consider its left-hand side as a short-hand
notation for @)\w?]gz)‘v. Another possibility is to extend the operat@y onto the polynomial
ring C[X, ¥] assuming that it acts ontrivially: Q; (¥ (x)¢(y)) = ¢(y) 0, (¥ (x)). Formulae
similar to (6.26) also arise in the separation of variables for Macdonald polynomials [24].
Itis a challenging problem to take formulae (5.14) and (6.26) as definitioRg ahd Q;,
respectively, and to build the theory ¢, in an entirely algebraic way.

(ci — M, y;"". (6.26)

7. Baxter’s equation

In the previous sections we have proved all the propertigk,dfom the list given in section 4
except Baxter’s difference equation (4c).7In this section we give a proof of identity (4.d)7
based on the ideas of [12].

For our purposes, the best suited realizatiof pfs that given by formulae (4.18) and (6.1).
Recalling thatr (u) = tr L(«) and thatL (u) is a 2x 2 matrix whose entries are differential
operators irx;, we can transform the left-hand side of (4cl@s follows:

[0:1(WV]G) = 1O, LOVYIG) = tr f " 0, (5 | DLV ®).
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Performing integration by parts we obtain

[0t (WVIG) = tr / A" [L* 000G | DIV E) (7.1)

where L*(1) is the matrix composed of adjoint differential operatofs;)* = L;k. For
examplep* = —9, (x9)* = —9x = —x9d — 1, and so on.

Using the factorization (2.2) af (1) into the product of elementary Lax matric&gA)
and the factorization (6.1) of the kerng},(y | x) into the factoraw; (6.2), we can represent
the kernel of the integral operatgr, (1) as

[Q:t V]G | 5) =tre; ) ... 500 [ [ wi = tr(g; 0owy) . .. (€5 w1) (7.2)
i=1
where
% _ )»—c,-+1+x,-8x[ bxi
0 = < ), 5 ) ) (7.3)

The possibility of the factorization (7.2) of);, L(1)] (¥ | X) depends crucially on the fact
that the factorsv; (6.2) each depend only on one variable That is why we take the left-hand
side of (4.1%€) to be 0,1 ()) rather tharr (1) Q;,.

The rest of the proof parallels that of the spectrality property for the classical case given
in section 2. Introducing matricés(x) by the equalityt*(A)w; = w;£;(1) and noting that

Cci — r—1 1
Oy, INw; (Yivt, yi, X)) = ——— — — (7.4)

X; — by;+1 Yi

we obtain

E()\,) _ A—c +1 +x,<8xi In w; bx; _ b(q%;;jfuﬂ - );_: bx; (7 5)

! - 3y, Inw; b ] azAizl 1 b ’
! Xi—byis1 Vi
and

[0 W] 1) =G D60 ... a0 = %G I D LR).  (7.6)
We note then that the gauge transformatigi) > N 1: (A N; with the gauge matrix

N = (g ”{f) (7.7)

leaves trL (1) invariant while makingfi (1) and, consequently, (1) triangular:

_ byi+1 0
Vi
Nl QN = ( eodi_ 1 b(cfx1>.vf>

Xi—byi+1 Vi Xi—byi+1
(=)0
= < PN e (7.8)
Xi—byis1 Vi w; (L)
where we used the identities
w,(A + 1) N (Cl' — A= 1))% w,(k — 1) _ Xi — byl'+]_ (7 9)
wi(A) X — by wi(A) (=i .
As aresult, we get the equality
~ Low(A+1 A—1
trL(A):b"Hw( ) ]‘[(x— ywid— 1 (7.10)

i1 wi(d)
which, obviously, proves (4.J.

Cwi()
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8. Discussion

For the example of the quantum integrable DST model we have shown that the construction
of the Q-operator as an integral operator, in the style of [12], and as the trace of a monodromy
matrix with a special representation of the quantum group corresponding to the auxiliary space,
in the style of [14], can be combined naturally within an unified approach. The same approach
can be applied to other integrable models which are more general than the DST model, such
as the generi& X X magnetic chain. This work is in progress and the results will be reported

in a separate paper. For a particular case of the homogee®dischain aQ-operator was
recently constructed in [25].

Another interesting problem is to build the theory of heoperator in a purely algebraic
manner starting from formulae (5.14) and (6.26).

In [14] itis argued that for the models governed by thetype R-matrices there exist two
different Q-operators corresponding to two differeposcilator representations of, [sl-].

Their eigenvalues correspond, respectively, to two linearly independent solutions of Baxter's
difference equations analogous to (4.14). In the case of the DST model the spapatator
can be obtained if we choose, in formula (5.4), another representation— i) of the
algebra (5.5), namelyt (u — 1) ~ —M~1(x — u)
~ -1 s
M(u; s, dg) = <—3s u+s85>' (8.1)

The corresponding?-operator has, however, more complex nature than the one studied
in this paper. Its eigenvalues, for example, are not polynomial ifhe problem is currently
under study.

We can point out the following application of our results to the theory of special functions
of many variables. Notice that the eigenfunctions of the quantum DST Hamiltonians are multi-
variable polynomials. The family of integral equations obtained for those polynomials provided
by the O, -operator supplements their representation as Bethe vectors and can be used in effi-
cient numerical calculations of these special functions, for instance, solving integral equations
by iterations. Simple considerations of the= 2 case show that we deal with multivariable
analogues of the Heun polynomials. For special functions of such complexity the integral equa-
tions found might be the only explicit representations to exist because there is no hope to get, for
instance, an integral representation. So, the integral equations found for the special functions
which were initially defined as eigenfunctions of the commuting differential operators can be
used first, as already remarked, for generating advanced numerical methods of their calculation,
and, secondly, for finding various asymptotics. These applications are being worked on.
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